Quantum Applications

Quantum Applications

Can quantum technologies help save the world?


No Comments
Image via United Nations University

Part 3 of 3: Modelling 

Gabriella Skoff

The final instalment in this series explores the modelling capacity that quantum computing promises to unlock. Modelling is a key tool in environmental security, enabling scientists and researchers to explore how the natural environment will react to changing conditions over time. It is well-known that quantum computers will enable advanced modelling technology by exponentially expanding the rate and scope of mathematical modelling capacity well beyond that of today’s computers. While the impact of this is most often cited with regard to chemical reactions and the pharmaceutical and health industries, environmental security, too, will be a great beneficiary of this quantum application.

Quantum computers will enable wider and more in-depth analysis of complex problems with more variables than ever before, a perfect tool when observing and predicting environmental challenges posed by the multitude of human and natural forces that abound. Quantum computational modelling will be exactly suited to sorting through these types of complexities that classical computers struggle with. The potential impact for this application will reach through weather forecasting to disaster preparedness. As one researcher writes of the promise quantum computing holds for numerical weather prediction (NWP):

The seamless systems based on the unified technology will process observational data, produce weather, climate, and environment forecasts on time scales from several minutes to decades; they will compute the probability of the occurrence of meteorological, hydrological, marine, and geophysical severe natural phenomena for many spatial scales.

The importance of that potential is not to be undervalued. While the practical value of this technology is obvious, the hidden impact this holds for environmental policy is immense.

No other stress contributes as much to environmental insecurity as that of climate change. This macro-level problem has so far proven to be “too big” to tackle effectively on a global governance scale, with climate change deniers and sceptics in both lay and science communities. The main reason for the lack of a complete scientific consensus on climate change, which can be argued, significantly validates climate change denial on the lay-level, is the lack of power in climate change forecasting and models. Of course, with the immensity of variables and factors at hand on a timescale of years or even decades, it is no easy task for our current computers to process all of this data and create accurate climate change models. Even on a daily basis, this presents an incredible challenge, with weather conditions varying from hour to hour. There is always uncertainty in weather modelling due to the changeability of a variety of meteorological factors. How many times you have heard on the morning news that heavy rain is forecasted and packed your umbrella only to carry it around uselessly with you as the sun shone all day long?

Although accurate climate change modelling may flummox a classical computer, this job may prove exactly the sort of task that a quantum computer would excel at. Provided with accurate and reliable modelling of climate change, perhaps the remaining 3% of climate change sceptics in the scientific community could be convinced of the urgency and need to promote sustainable environmental policy in order to combat climate change. Of course, even with 100% consensus amongst the scientific community, climate change deniers will still resent the government funding and lifestyle changes that will inevitably be needed to induce mass change. However, achieving the consensus may prove to be the impetus society needs in order to prioritise that change.

Quantum technologies hold immense promise for confronting the multifaceted challenge of environmental security. As with most things quantum, we cannot predict with certainty; but time—along with an appropriate prioritization of resources to our greatest collective threat— will decide just how helpful these applications will truly be.

Gabriella Skoff is a Researcher with Project Q and collaborates with Dr Serdar Turkeli of the United Nations University-MERIT, where she continues her research on the topic of emerging quantum technologies and environmental sustainability. 

Quantum Applications

Can quantum technologies help save the world?


No Comments
Image via United Nations University

Part 2 of 3: Energy

Gabriella Skoff

Part two of this series explores how, in the field of renewable energy, quantum technology has been quietly pushing ahead to improve the efficiency and cost of green energy. Quantum qualities hold vast promise for commercial applications in solar power and other cutting-edge, sustainable energy technology. These emerging technologies could hold the key to shifting renewable energy into the mainstream, finally making it cheaper and more efficient than traditional energy sources for the general population.

Quantum dots, used to convert sunlight to energy with increasing efficiency, are quickly becoming the new material of choice for solar panels. Due to their nanoscale size, quantum dot sensitized solar cells (QDSSC) have unique properties which allow them to convert more energy from the sun than traditional materials. These third-generation quantum solar panels have reduced weight, improved flexibility and, importantly, are cheaper to make than previous generations of solar technology. This application of quantum technology could be a huge breakthrough in the solar market, enabling it to be more competitive, both in terms of cost and efficacy, than traditional energy sources.

While this technology is still in the pre-commercial stages of development, quantum photovoltaic systems are expected to make a big impact on the renewable energy sector, promising to reduce global reliance on fossil fuels. Before this can occur, however, there is a significant amount of troubleshooting still to be done. As with most nano-products, the impacts of QDSSC on the human and natural environments are still largely unknown and potentially toxic. Another issue is the durability of QDSSC across the weather spectrum. Unlike issues of negative human and environmental impact, which receives very little research funding or government interest, research into the all-weather question is moving along swiftly in answer to commercial needs.

While quantum technology is applied for the purpose of augmenting the amount of energy that can be harvested from solar radiation, it is also being explored as a method to capture what is referred to as “wasted energy”. Wasted energy is the name given to infrared energy produced by the sun that is not absorbed by solar panels or through photosynthesis into useable energy. This unused energy does not disappear but spreads out and is absorbed into the earth’s surface, making it incredibly difficult to collect and use.

By employing a method called quantum tunnelling, scientists have created a proof of concept antenna that can detect this wasted energy in the form of high-frequency electromagnetic waves and transform it into usable energy. Unlike solar panels, this quantum-enabled device could operate 24-hours a day, under any weather conditions. This application of quantum technology presents an entirely new method of energy transfer that would be completely green and again has the potential to revolutionize the renewable energy sector.

While the promise is great, this technology is in its infancy, with many technical problems still to surmount. Still, quantum technology opens many doors into the renewable energy space for technology that holds great potential for the coming years.

Don’t miss the final instalment in our Environmental Security series tomorrow.

Quantum Applications

Can quantum technologies help save the world?


No Comments

Part 1 of 3: Monitoring

Gabriella Skoff

The first instalment in our Environmental Security series examines how quantum sensing can help to better monitor our natural environment, a function for which we already heavily rely upon satellites. Quantum technology promises to extend these capabilities, providing greater accuracy and security. As with all things quantum, the capabilities of quantum sensing applied technologies go far beyond what has traditionally been possible.

Quantum sensing allows us to monitor, detect and study the environment by gathering large amounts of data, enabling us to make more reliable decisions with the vast amounts of information in hand. These capabilities can have a vital impact for disaster preparedness especially, by enabling us to detect even the smallest meteorological disturbances that could ultimately lead to catastrophic natural disasters. Some budding applications in this space include the ability to accurately detect potential earthquakes and volcanic activity.

With other applications that promise to improve telecommunications and navigation, quantum sensing may be first to reach the commercial market. However, with the immense promise this technology brings to the monitoring and sensing of environmental data, it will also bring legitimate threats and challenges. The further development and application of this technology will undoubtedly see higher levels of surveillance, sure to solidify its position as a supremely valued military tool. On the other side of the coin, this same technology will enable quicker and more effective search and rescue procedures in a post-disaster context, natural or otherwise.

The field of quantum sensing or quantum metrology is largely reliant on earth-orbiting satellites for the monitoring, collection and transmission of data. Satellites are absolutely critical to environmental security infrastructure. They are responsible not only for the gathering of key data about the environment such as air temperature, wind, sea surface temperature and soil moisture, but also the monitoring of arable land, deforestation and urbanization. The constant and reliable monitoring of these environmental factors allows populations an increased level of environmental security.

With the advent of the quantum age, satellites—this crucial component in the internet of things—will become vulnerable to hackers and ill-doers. In this future scenario, all data produced by satellites will be susceptible to corruption or complete obliteration. This would have a disastrous impact, not only for issues of environmental security but for our entire infrastructure, including electric, water and transportation. Luckily, another quantum application in the development stage promises to confront this threat. Quantum cryptography allows for a quantum-secure communication, a feat that has already been provisionally achieved by China via its Micius satellite.

Responsible innovation will be paramount in quantum sensing technologies. Satellites have long been considered a security apparatus, but their militarization is only just beginning. In order to ensure that quantum-enabled satellites deliver as much on their promise for environmental security as for military security, it is crucial that their development for this purpose be prioritized and that the full scope of their potential impact be intelligently understood.

Don’t miss the second instalment in our Environmental Security series tomorrow.

Quantum Applications

Can quantum technologies help save the world?


No Comments

A three-part examination of quantum applications for environmental security

Image via United Nations University

Gabriella Skoff

From drinkable water sources to arable land, healthy seas to clean air, reliable rainfall and predictable seasonal changes, humans depend entirely on the environment to provide the resources and conditions necessary for life. When access to vital resources is impeded or weather conditions become erratic, the equilibrium of life becomes unstable. It is little wonder then, that the threat posed to human populations by catastrophic environmental events, the degradation of the natural environment, the impact of climate change, and the growing force of overpopulation, has seen environmental security emerge as a serious priority for national and global governance.

In response to these threats, environmental technologies aim to create solutions to some of the major challenges presented within the scope of food and water security and sustainable energy. Although they appear far less frequently in headlines than some of their flashier applications, quantum technological advances in sensing, communication and computing present promising solutions for issues of environmental security. In light of the great uncertainty that surrounds the qualities of quantum technologies, an ambiguity which often invokes anxiety and fear, it is of great value to explore the positive impacts of quantum innovation that the future may hold.

The multifaceted threats to environmental security outlined above contribute to the disappearance of natural resources and to the advent of more frequent, extreme weather conditions. Indeed, climate change has been identified in the security space as a “threat multiplier” and a “catalyst for conflict”, with the power to destabilize social, economic and political conditions. Environmental insecurities may manifest in food and water scarcity, which can cause the inflation of prices for basic goods, provoke mass migrations, cause civil unrest and incite chaos. These conditions create the perfect breeding ground for conflict.

Likewise, global dependence on fossil fuels, apart from being urgently unsustainable, poses national security threats that have already resulted in war on numerous occasions. While many of the current effects of environmental insecurity are experienced in already volatile or susceptible nations, it is inevitable that these effects will spill over borders and into countries which boast more resources and reliable infrastructure to support climate change refugees and migrants fleeing conflict.

The role of technology in supporting initiatives across the entire spectrum of environmental security is more critical now than ever before. Quantum technologies promise to have an impact in several fundamental areas, including disaster preparedness, monitoring of deforestation and urbanization, green energy and in the creation of predictive climate change models. These applications extend right across the disciplines of quantum sensing, communications and computing.

The potential contributions of quantum technologies for increasing environmental security can be categorized into three main groupings: monitoring, energy and modelling. As with any technology, promise does not come without limitations and risks. While many of the potential quantum solutions for issues of environmental security are in their nascent stage of research and development, it is crucial that these limitations and risks too are understood.

In this three-part series, Project Q examines the bright hopes and the shadowy promises of the quantum applications that could help confront the threats posed by environmental insecurity. Join us over the next three days as we ask the question: can quantum technologies help save the world?           

Quantum Applications, Quantum International Relations

Keeping up with quantum: The Pentagon’s JEDI contract


No Comments

DODJEDIImage via ZDNet

Gabriella Skoff

The U.S. Department of Defense (DoD) approach to the technology industry (namely, playing competing tech providers off against one other in order to procure the highest quality technology) has recently focused in on cloud technology. Early this year, the DoD announced plans to open bidding for a $10 billion contract for the single-award procurement of a new cloud strategy called the Joint Enterprise Defense Infrastructure program, or JEDI. This decision has received bountiful industry criticism. Arguments have focused largely on whether the contract’s single-award system and its precise requirements allow for competition between cloud technology providers or if it has been created to favor certain companies. But a potentially tragic flaw that few are hitting on is the fallibility of a cloud storage program being widely used for defense purposes in the context of other rapidly developing emerging technologies, namely quantum computing.

The decision to transition DoD IT infrastructure to a cloud-based system has indeed been made with emerging technologies in mind. Ellen Lord, Defense Undersecretary for acquisition and sustainment, acknowledged that technologies “such as artificial intelligence and machine learning are fundamentally changing the character of war”, and that the use of these technologies “at scale and at a tempo relevant to warfighters requires significant computing and data storage in a common environment”. The updated cloud technology would store the government’s top defense secrets and enable military personnel working in remote locations to access critical information. These improvements are vital updates to the current defense IT infrastructure that will help the U.S. military to maintain a technological advantage, as per the Obama-era Third Offset Strategy.

However, between all the unfolding “races” to technological supremacy this IT transformation is set to accommodate, the predicted capabilities of quantum computing seem to have been critically overlooked.

It is well known that quantum computing will transform the security of cyberspace within the coming decades, but an approach to countering this threat is not noted anywhere in the JEDI contract. There are certainly companies and researchers working on quantum-secure cryptography through applications such as quantum key distribution, and even some research into the creation of a quantum blockchain—potential solutions to the quantum computing security threat. Surprisingly, however, these are not areas toward which the DoD seems to be looking.

Further concern stems from a lack of clarity around how much the DoD will come to rely on the single-source provider across all defense systems—will this be the first step towards an ultimate systems consolidation, centralizing cloud storage across the U.S. defense sector? If this is to be the case, it is even more critical that the utmost caution be taken now to ensure that the new system will be as secure as possible in the future.

Tech companies have been outspoken on this front, claiming that the use of multi-cloud technology would help to prevent security breaches and major outages. As IBM’s General Manager of the company’s federal business said: “No major commercial enterprise in the world would risk a single cloud solution, and neither should the Pentagon”.

The US DoD should be looking not one step ahead in its IT solutions, but five, even ten steps ahead. With the rapid pace at which technologies are being developed, there is a real need for foresight in this space. As Thomas Keelan of the Hudson Institute argues, in this cloud technology venture, the DoD is both missing a holistic approach to emerging technologies as well as limiting its own “crypto-agility”. The replacement of old systems is cumbersome and logistically challenging. But failing to roll out a new, quantum-secure system across such a large organization before the age of quantum computing dawns on us is both inefficient and leaves systems vulnerable to the threat of quantum capabilities. Capabilities which may very well not fall into the hands of the U.S. DoD first.

Quantum Applications

A quantum blockchain revolution?


No Comments

quantumcomp.originalImage via Bitcoin Magazine

Gabriella Skoff

Blockchain has been a buzzword in the tech community for some time now. But while you may have heard of it in reference to Bitcoin, the first application of this technology, blockchain has the potential to revolutionize a diversity of sectors and disrupt current power structures world-wide. In applications ranging from banking to the diamond trade, electronic voting to health records, blockchain could be used as a digital ledger for a wide range of “transactions, agreements, contracts”. By securely recording and storing data that is accessible to anyone in the blockchain network and impossible to hack given the current capabilities of computing, this technology promises to enhance security and transparency on a global scale.

The problem is that the coming of age of quantum computing will most certainly pose an existential crisis to the security of blockchain encryption. While blockchain cryptography is currently secure enough to prevent hacking, it will not stand a chance against the powers of quantum computing once this has been fully developed. But while quantum may present the biggest threat to blockchain, it may also be its greatest hope.

Recent research by theoretical physicists Del Rajan and Matt Visser of Victoria University in Wellington, New Zealand, suggests that quantum-izing the entire blockchain could solve this issue. While quantum cryptography has been suggested as a workaround for this issue before, Rajan and Visser’s research is novel. They argue that the solution lies in creating a blockchain that relies on quantum particles entangled in time, rather than space.

With this new structure, any attempt to hack or manipulate the blockchain would result in the link being destroyed, as entanglement is extremely delicate. In their paper, Rajan and Visser explain that by encoding transactions on a quantum particle, or photon, it would be possible to entangle the previous information, allowing the chronologically older blocks to disappear once they have been absorbed into the more recent addition.

According to the research, quantum entanglement in blockchain would actually create what the authors refer to as a ‘quantum networked time machine’ effect:

“…with entanglement in time, measuring the last photon in a block influences the first photon of that block in the past before it got measured. Essentially, current records in a quantum blockchain are not merely linked to a record of the past but rather a record in the past, one that does not exist anymore.”

Importantly, this would produce a dual security benefit. Any attempt to tamper with the quantum blockchain would have to be done only to the available record, the most recent block, as all previously entangled blocks no longer exist, giving these earlier blocks complete immunity to hacking. Further, anyone attempting to tamper with the quantum blockchain will render the entire link invalid, informing the network of the attempted hack.

Perhaps the most enticing element of Rajan and Visser’s work is their claim that: “…all the subsystems of this design have already been shown to be experimentally realized”. However, this does not mean that the technology is going to being available for large-scale application in the coming months or even years. Quantum computing and certainly quantum blockchain is still mostly confined to the realm of theoretical physics. The same argument goes for blockchain, which many have cautioned is still decades away from reaching its potential.

Nevertheless, it clear that there is exciting promise for these two disruptive technologies to work in tandem in the future. And while our enthusiasm for this future should be couched with a certain level of cautious realism, it is exciting to imagine the global impacts of a quantum blockchain revolution in business, politics and beyond.

It is no mistake that the conversation around these new technologies can eerily echo that of the early era of the Internet in creating a previously unimaginable, egalitarian and decentralized space. Given this, it is certainly of value to think ahead in order to ensure that the ways in which these emerging technologies will be used is consciously targeted to benefit society. In doing so, perhaps we can better ensure their potential power is not co-opted to serve only the few, but the many.