Author: Gabriella Skoff

Artificial Intelligence, Quantum International Relations, Quantum Research

India Races Toward Quantum Amid Kashmir Crisis


No Comments

Amid troubling news of serious human rights violations carried out in India-controlled Jammu and Kashmir—including a debilitating digital blockade lasting over two weeks—Indian Prime Minister Narendra Modi signed an agreement with France for a landmark technological collaboration in quantum and artificial intelligence (AI). The Indo-French collaboration between French company Atos and India’s Centre for Development of Advanced Computing (C-DAC) will establish a Quantum Computing Experience Centre at C-DAC’s headquarters in Pune, India and deliver an Atos Quantum Learning Machine. The high technology partnership, which “advocate[s] a vision of digital technologies that empowers citizens, reduces inequalities, and promotes sustainable development”, sits upon the controversial backdrop of India’s current actions in the Kashmir crisis and presents an interesting view into the intersection of international politics and quantum technologies.

During his first term, Narendra Modi began to position India as a global technology hub, putting its innovation sector on the map by embracing international investment and collaboration. The advancements that have been made over the last five years as a result of these activities have helped to fuel India’s socioeconomic development and cement its place on the global stage as a major emerging economy with a vibrant technology sector. Now in his second term, Modi seeks to apply a digital taxation to global technology giants like Google and Facebook on their activities in India. Though this policy shift has been identified as a potential barrier to Big Tech’s incentive to contribute to India’s start-up space, Modi has nevertheless continued to cultivate a tech-forward name for his government. His “New India” government focuses on sustainable development and emerging technologies, especially agricultural technology, AI and quantum.

Within this context, India’s national quantum technology research and development capacity has blossomed at a rapid pace, especially with regard to quantum mechanical theory and theoretical physics research and software development. However, unlike the top competitors in quantum computing such as China and the U.S., India lacks a strong quantum computing hardware industry, a challenge which could be exacerbated by Modi’s Big Tech taxation policy. In order to supplement research activities in its burgeoning quantum and AI sectors, Modi has instead turned toward collaboration with international governments as a vehicle to boost domestic technological development. For example, India’s recently established fund-to-fund partnership with Japan will support over 100 start-ups in AI and IoT. Likewise, the new Indo-French partnership is a critical piece of the puzzle for India, promising to help boost its national deficiency in applied quantum computing development and help India to become a leader in the quantum space.

With international partnerships playing such a key role in Modi’s plan for the development and growth of India’s quantum computing and AI industries, there is a sense that the country’s actions in state-controlled Jammu and Kashmir are damaging its international reputation. This perspective, however, is demonstrably negated by the signing of the Indo-French bilateral agreement. The agreement, which stipulates French alignment with India as a partner in sustainable development and emerging technologies, outlines the countries’ shared commitment to “an open, reliable, secure, stable and peaceful cyberspace”. It was signed into existence even as India, the world leader in internet shutdowns, enacted a digital lockdown on Kashmir for the 51st time in 2019 alone. This data sits in stark contrast to the stated objectives of the partnership and demonstrates the separation of business from peace-building priorities on an international scale.

The Kashmir conflict, a turbulent territorial dispute between India, Pakistan and China, dates back to the partition of 1947 and has already incited four wars between India and Pakistan. Kashmir, dubbed one of the world’s most militarized zones, is of strategic value to both countries and is India’s only Muslim-majority region. The recent conflict was spurred by a series of brutal attacks and rebellions since February 2019, which ultimately led the Modi government to revoke India-controlled Kashmir’s “special status” of autonomy granted under Article 370 of the Indian constitution. Given this complex history and characterization, India’s fresh assault on the region has led many (including Pakistan’s own Prime Minister) to fear an escalation of violence that could result in a worst-case-scenario nuclear face-off between India and Pakistan.

Whether or not it is representative of the true feelings of Modi’s “New India”, Indian national media has expressed nearly unequivocal supportive of the revocation of Article 370. French comments, however, lean toward neutrality—tactfully holding the situation at arm’s length while urging for a bilateral negotiation between India and Pakistan. Regardless of the two countries coming to a peaceful resolution or not, it appears that international investment in Indian quantum and AI development shall not waver in the face of the Kashmir conflict. Ironically, as India sprints to catch up in the quantum race with the support of France and other international allies, the results of the past technological nuclear arms “race” looms heavy over the continent.

Quantum Internet, Quantum Research

Quantum Teleportation: Paving the Way for a Quantum Internet


No Comments

Last week’s big quantum news centred on two proof of concept studies, both of which claim to have achieved quantum teleportation using a tripartite unit of quantum information called a qutrit, for the first time. While quantum teleportation has been demonstrated previously, it has only been carried out with qubits, which are capable of storing less information than qutrits but thought to be more stable. The novel feat was achieved independently by two teams, one led by Chinese physicist Guang-Can Guo at the University of Science and Technology of China (USTC) and the other, an international collaboration headed by Anton Zeilinger of the Austrian Academy of Sciences and Jian-Wei Pan of USTC. While both teams have reported their results in preprint articles, the article by the Austrian-led team has been accepted for publication in Physical Review Letters.

Competition for credit of this achievement aside, the team’s findings ultimately support each other in substantiating an advancement in quantum teleportation theory: namely, that quantum networks should be capable of carrying far more information with less interference than previously thought. This advancement—like many in the world of quantum—is likely to be found most exciting for physicists, evading the grasp of an applied significance for those of us with less scientific minds. Nevertheless, the notion of quantum teleportation has once again grabbed headlines and imaginations, providing a good opportunity to explore the concept and the applied significance that advancements like this might eventually have on our world.

While it may sound flash, quantum teleportation is an affair less akin to science fiction than one might imagine. On a basic level, quantum teleportation differs from ‘Star Trek teleportation’ because it is used to transmit information rather than macroscale physical objects, like human beings. This is possible because of quantum entanglement, a phenomenon of quantum physics that allows us to look at one particle or group of particles and know things about another, even if those particles are separated by vast distances. Quantum teleportation relies on entanglement to transfer information based on this shared state of being demonstrated by entangled particles. As such, quantum teleportation can be defined as “the instantaneous transfer of a state between particles separated by a long distance”.

Quantum teleportation holds the most obvious promise in the discipline of quantum communication, where its impact in secure communication was established as early as 1997. In 2017, Chinese scientists working with a team in Austria made waves with their announcement that they had achieved transnational quantum teleportation, establishing a quantum-secure connection for a video conference between the Chinese Academy of Sciences in Beijing and the Austrian Academy of Sciences in Vienna, some 7,600 kilometres away from each other. The experiment utilized China’s Micius satellite to transmit information securely using photons. Micius is a highly sensitive photon receiver, capable of detecting the quantum states of single photons fired from the ground. These photons, beamed via Micius, acted as qubits, allowing researchers in both countries to access a shared quantum key and thus enabling them to participate in the quantum-encrypted video call. Critically, should the data have been accessed by a third party, the code would be scrambled, leaving evidence of tampering for researchers at both ends of the connection.

This experiment, facilitated by quantum teleportation, proved two fundamental and impactful theories in quantum physics: that quantum communication can provide a previously unfathomable level of security and that it is capable of doing so on a global scale. Given these capabilities and coupled with the new qutrit proof-of-concept work, the realm of applied possibilities for quantum teleportation is expanding.

Aside from ultra-secure, transcontinental video conferences, one very hyped application for quantum teleportation is in the development of a hyper-fast quantum internet. Due to the entangled state of particles, information is transmitted instantaneously in quantum teleportation—faster than the speed of light. However, the transfer of this information is still required to operate within the current confines of classical communication. As such, even quantum information must travel through ground-based fibre optic cables or via photon-sensitive space-based satellites, like China’s Micius. This infrastructure is both expensive and potentially expansive, posing a formidable challenge for a global roll-out of a quantum internet. Still, these early experiments have laid the groundwork for the development of a quantum-secure Wi-Fi by putting theory to the test and producing promising results.

Currently, a team of researchers at Delft University in the Netherlands is working to build a quantum network, using quantum teleportation as the mode of transport for information between linkage points. The project, which aims to connect four cities in the Netherlands, is scheduled for completion in 2020. In China too, researchers are constructing the backbone for a quantum network to connect Beijing and Shanghai. Aside from the support of private corporations such as banks and other commercial entities, progress on the concept of both localised and international quantum networks has been spurned by pressing anxiety about global levels of cybersecurity

A critical advantage to a future quantum internet is the enhanced security afforded by quantum teleportation—the ability to create an unhackable connection. This could have serious implications for national security and could present a potential solution for many foreign surveillance and interference challenges that countries face today. For example, it is now public knowledge in the U.S. that Russia has the demonstrative ability to directly interfere with most paperless voting systems. While states are currently reticent about making changes to the current U.S. vote-casting system, alternatives are slowly being considered—from regressive paper ballot casting to progressive blockchain applications—in order to safeguard American votes against hacking efforts. Quantum teleportation could offer an interesting alternative in this space as the technology continues to develop.

Though quantum teleportation will not be transporting human beings between planets any time soon, it will play a key role in ushering in an internet revolution. While it remains to be seen exactly how that revolution will play out, it is clear that it will bring an unprecedented level of security and speed to global communications. It is also apparent that the level of interest in the secure and high-speed communications afforded through quantum teleportation is broad and deep, spanning both public and private sectors across the globe. Quantum teleportation has recently seen a number of experimental proofs, pushing the field of quantum communications to the fore of quantum development and promising to deliver a much sought-after security transformation within the decade.